

IT'S WHAT'S INSIDE THAT COUNTS ALTAIR 5X Multigas Detector

With MSA XCell[®] Sensor Technology

20.8

0.03

0

0

0

0.0

IT'S WHAT'S INSIDE THAT COUNTS

WORKERS who face potentially dangerous situations deserve the best protection available. At MSA, we work tirelessly to build smarter, better gas detection instruments that people across the world rely on. First we introduced MSA's advanced technology with the ALTAIR 4X Multigas Detector with XCell Sensors. Now we're proud to introduce the expansion of the most advanced technology available in any portable gas detector on the market:

the ALTAIR 5X Multigas Detector with XCell Sensor Technology.

Built on Durability

The ALTAIR 5X Multigas Detector for LEL, O₂, and toxic gas detection is as tough and functional as it looks. A rugged polycarbonate housing provides unsurpassed durability, including the ability to survive a 3 m drop. Inside, a field-proven integral pump provides consistent gas flow without the problems of externally-attached components. Ergonomic design, glove-friendly buttons, and high-contrast display make the ALTAIR 5X Multigas Detector easy to use in all applications.

Powered by Performance

Toughness and durability aren't the whole story. The real strength of the ALTAIR 5X Multigas Detector comes from new sensor technology. MSA XCell Sensors have a typical life of more than double the industry average, and are engineered using MSA's proprietary application-specific integrated circuit (ASIC) design. By miniaturizing the sensors' controlling electronics and placing them inside the sensor itself, MSA XCell Sensors offer superior stability, accuracy, and repeatability.

MSA XCell Sensors are a breakthrough in chemical and mechanical sensor design, enabling faster response and span calibration times. With less time spent on calibration and bump tests, you save calibration gas, maintenance costs, and in turn, save money. But most importantly, in your industry, saving seconds on response time can also mean saving lives.

In addition to MSA XCell Sensors, the ALTAIR 5X Multigas Detector can also be equipped with our wide variety of IR sensors covering many gases and ranges including CO₂.

Flexibility to Meet Your Needs

MSA's ALTAIR 5X Multigas Detector provides many options to fit various applications. The detector is configurable with either a high-resolution colour or monochrome LCD display with multilingual capabilities. MSA's Logo Express® Service option is available to customize the colour display. The detector is easily configurable with interchangeable plug-and-play sensor slots for MSA XCell Sensors. Up to six gases can be monitored simultaneously.

Furthermore, this multigas detector offers optional glow-in-the-dark instrument housing for IR sensor-equipped units. The ALTAIR 5X Multigas Detector's lithium-ion battery lasts up to 20 hours, allowing it to be used over multiple shifts. An alkaline battery pack is also available as an accessory. MSA's ALTAIR 5X Multigas Detector is fully compatible with the MSA GALAXY[®] Automated Test System and MSA Link Software.

MSA XCell O₂ Sensor

MSA XCell Ex Sensor, combustible

Adding microelectronics inside the sensors provides more control and higher performance than previous generations. $\begin{array}{l} \mathsf{MSA} \: \mathsf{XCell} \: \mathsf{SO}_2 \, , \mathsf{CI}_2 \\ \mathsf{or} \: \mathsf{NH}_3 \: \mathsf{Sensor} \end{array}$

MSA XCell CO/H₂S Sensor

MSA XCell Sensors are a breakthrough in chemical and mechanical sensor design, enabling faster response and span calibration times.

THE MSA COMMITMENT FROM THE LATEST IN SENSOR TECHNOLOGY TO INSTRUMENT DESIGN AND MANUFACTURING, MSA HAS THE CAPABILITIES AND KNOWLEDGE TO SUPPORT YOUR PORTABLE GAS DETECTION CHALLENGES.

ZUOL

۶

PPH

7LEL

PPM

www.msa-europe.com

MSA XCell Technology:

Save Time, Save Money, Save Lives

Building on years of sensor design experience, MSA is revolutionizing sensor technology with breakthroughs in design that improve performance.

- New XCell exotic SO₂, Cl₂, and NH₃ Sensors for expanded monitoring applications
- Sensor response and clear times in under 15 seconds for most common sensor configurations
- Bump test in under 15 seconds for most common sensor configurations
- Span calibration time of 60 seconds for most common sensor configurations
- Greater signal stability and repeatability under changing or extreme environmental conditions
- All XCell Sensors are capable of plug-and-play capabilities for easy reconfiguration

ALTAIR[®] 5X

In connection with alpha Personal Network

The Wireless USB option enables the integration of ALTAIR 5X into the alpha Personal Network. This monitoring and alarm system consists of modular and wireless components that can be individually integrated to enhance your operation's safety and capability as needed. The ALTAIR 5X W-USB can monitor operative personnel using breathing apparatus and portable gas detection equipment while sending information to the central control station alphaBASE. All gas readings and alarms can be seen by incident command monitoring personnel in real time.

Full monitoring:

alpha Personal Network system can be used in several combinations for a wide variety of applications, for example when you work alone on large or complex sites, when you need to work under chemical suits, or when you want to keep an eye on all your screw members), including full telemetric monitoring of gas alarms, pressure and motion for breathing apparatus and chemical protection suits wearers.

For more information please see alpha Personal Network leaflet 01-050.2.

With reliable, extended-life XCell Sensors, there's no need to replace sensors after two years.

- Typical life greater than four years for combustible, O_2 , CO/H_2S , and SO_2 sensors
- Typical life greater than three years for NH₃, and Cl₂ sensors
- Combustible sensor proprietary operating mode helps it stand up to poisons over the life of the sensor
- End-of-sensor-life warning gives advanced notice to user, reducing service outages
 - Three-year back-to-back instrument warranty includes $CO/H_2S/O_2/LEL/SO_2$ and IR sensors
 - Two-year warranty on NH_3 and Cl_2 ; minimum 12-month warranty on other sensors

alphaHUD – Head-Up-Display

• Displays pressure and gas alarms

ALTAIR 5X W-USB – Gas Detector • Measures gas concentrations • Provides gas alarms Breathing apparatus + alphaMITTER – Transmitter • Sends pressure data

alphaBASE + PC – Central Control Station

• Displays and stores all data from ALTAIR 5X and alphaSCOUT

alphaSCOUT – Personal Monitoring Device

- Acts as a hub
 Calculates remaining service time
 Generates motion alarm
- Generates motion alarm (MotionAlert) and panic alarm (InstantAlert)

MSA-exclusive feature

$\begin{array}{c} 0 - \\ 0 - 3 \\ 0 - 2 \\ 0 - 2 \\ 0 - 2 \\ 0 - 2 \\ 0 - 2 \\ 0 - 2 \\ 0 - 2 \\ 0 - 1 \\ 0 - 2 \\ 0 - 2 \\ 0 - 1 \\ 0 - 2 \\ 0 - 1 \\ 0 - 2 \\ 0$	ange -100 % -000 ppm 00 ppm 20 ppm 20 ppm 20 ppm 20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25 % Vol 00% Vol 25 % Vol 00% Vol 3 m	Resolution 1% LEL 0.1% Vol 1 ppm 1 ppm 0.1 ppm 0.5 ppm 0.01 ppm 0.1 % Vol 1% Vol
0-3 0-20 0-2 0-2 0-2 0-2 0-2 0-3 0-1 0-2 0-1	00% Vol 000 ppm 00 ppm 20 ppm 20 ppm 00 ppm 20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	0.1% Vol 1 ppm 1 ppm 0.1 ppm 0.1 ppm 1 ppm 0.5 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ypm 0.1% Vol 1% Vol
0^{-20} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-2} 0^{-1} 0^{-2} $0^{$	000 ppm 00 ppm 20 ppm 20 ppm 00 ppm 20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	1 ppm 1 ppm 0.1 ppm 0.1 ppm 1 ppm 0.5 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 wol 0.1% Vol 1% Vol
0-2 0-2 0-2 0-1 0-2 0-1 0-3 0-1 0-2 0-10 0-10 0-10 0	00 ppm 20 ppm 20 ppm 00 ppm 20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	1 ppm 0.1 ppm 0.1 ppm 1 ppm 0.5 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 wol 1% Vol 1% Vol
0-2 0-2 0-2 0-2 03 0-10 0-2 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-2 0-10 0-2 0-2 0-10 0-2 0-10 0-2 0-10 0-2 0-10 0-2 0-10	20 ppm 20 ppm 20 ppm 20 ppm 20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 25% Vol 20% Vol 20% Vol	0.1 ppm 0.1 ppm 1 ppm 0.5 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.01% Vol 0.1% Vol 1% Vol
0-2 0-10 0-2 0-2 0-3 0-10 0-2 0-10 0-10 0-10 0-10 0-10 0-10	20 ppm 00 ppm 20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	0.1 ppm 1 ppm 0.5 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.01% Vol 0.1% Vol 1% Vol
$0 - 1^{10}$ $0 - 2^{10}$ $0 - 2^{10}$ $0 - 2^{10}$ $0 - 1^{10}$ $0 - 10^{10}$ $0 - 10^{10}$ $0 - 10^{10}$	00 ppm 20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	1 ppm 0.5 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.01% Vol 0.1% Vol 1% Vol
0-22 0- 0-3 0-10 0-22 0-10	20 ppm 1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	0.5 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.01% Vol 0.1% Vol 1% Vol
0- 0-3 0-1 0-2 0-10 0-10	1 ppm 5 ppm 30 ppm 0% Vol 25% Vol 25% Vol 200% Vol 200% Vol	0.01 ppm 0.1 ppm 0.1 ppm 0.01% Vol 0.1% Vol 1% Vol
0- 0-3 0-1 0-2 0-1 0-1 0-1	5 ppm 30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	0.1 ppm 0.1 ppm 0.01% Vol 0.1% Vol 1% Vol
0-3 0-1 0-2 0-1 0-1 0-1	30 ppm 0% Vol 25% Vol 00% Vol 00% Vol	0.1 ppm 0.01% Vol 0.1% Vol 1% Vol
0–1 0–2 0–1(0–1(st	0% Vol 25% Vol 00% Vol 00% Vol	0.01% Vol 0.1% Vol 1% Vol
0-2 0-10 0-10 st	25% Vol 00% Vol 00% Vol	0.1% Vol 1% Vol
0–1(0–1(st g	00% Vol 00% Vol	1% Vol
0–10 st g	00% Vol	
0–10 st g	00% Vol	
st g		
)) n n r t y t y	without b >95 dB ty 2 ultra-bri Standard Standard High-cont monochro colour disp Adjustable Rechargea battery an	r IR version) elt clip /pical ight LEDs on top trast ome or
e e e	>18 hours (IR = 14 hr \leq 6 hours 0 to 40 °C -20 to 50 °C	rs) @ room temperature
n y	-40 C to + 15-90% F non-cond	RH
g	(Adjustabl 200 hours	le) average of (at 1-minute intervals)
y y	3-year incl CO/H ₂ S/LE NH ₃ and C	luding EL/O2/SO2/IR sensors. Cl2: 2 years.
	nnnty ty e eeeny ng gy	$\begin{array}{llllllllllllllllllllllllllllllllllll$

	/luiti-gas Detector with 3- mp, and tubing	year warr	anty, data logging, charger,			
Part Number						
10119600	(LEL [Pen], O ₂ , CO, H ₂ S) Monochrome					
10119614	(LEL [Pen], O ₂ , CO, H ₂ S) Colour					
10119649	(LEL [Pen], O ₂ , CO, H ₂ S) Colour, Wireless USB					
10119616	(LEL [Pen], O ₂ , CO, H ₂ S, SO ₂) Colour					
10119615	IR (LEL [Pen], O ₂ , CO, H ₂ S, 0–10% CO ₂) Colour					
	irations available on request					
ALTAIR 5X N and 30 cm p		ial Kits – i	ntegral pump, 3 m sampling line,			
10120567	(LEL [Pen], O ₂ , CO, H ₂ S) Monochrome					
10120568	(LEL [Pen], O ₂ , CO, H ₂ S) Colour					
10120569	IR (LEL [Pen], O ₂ , CO, H ₂ S, 0–10% CO ₂) Colour					
ALTAIR 5X G	ALAXY Automated Test System					
10090605	Standard system with charging capability and cylinder holder					
10090591	Smart system (memory card) with charging and cylinder holder					
Calibration	Gas					
10053022	Gas can (58 l) (1.45% CH ₄ , 15.0% O ₂ , 60 ppm CO, 20 ppm H ₂ S)					
10102853	Gas can (58 l) (1.45% CH ₄ , 15.0% O ₂ , 60 ppm CO, 20 ppm H ₂ S, 2.5% CO ₂)					
10011938	Gas can (34 l) 5 ppm SO ₂ in N_2					
Other calibrat	Other calibration gases available on request					
Replacemer	nt Sensors					
10106722 XC	Cell Combustible Sensor	10062209	IR Carbon dioxide, CO ₂ 0–10% Vol Sensor			
10080222 Ch	lorine dioxide Sensor	10106727	XCell Sulfur dioxide Sensor			
10106729 XC	Cell Oxygen Sensor	10062201	IR Butane, C ₄ H ₁₀ 0–25% Vol Sensor			
10116638 Ph	osphine Sensor	10106728	XCell Chlorine Sensor			
10106724 XC	Cell Carbon monoxide Sensor	10062205	IR Methane, CH ₄ 0–100% Vol Sensor			
10106375 Hy	/drogen cyanide Sensor	10106726	XCell Ammonia Sensor			
10106723 XC	Cell Hydrogen sulfide Sensor	10062207	IR Propane, $C_3H_80-100\%$ Vol Sensor			
10080224 Ni	trogen dioxide Sensor					
Accessories						
10099648 Le	ather holster	10082834	JetEye IR Adapter w/ USB Connector			
10103189 Sa	mpling line, 3 m, PU conductive	478359	Pressure reduction valve 0.25 l/min			
10103191 Sa	mpling probe, flexible 30 cm	10088099	MSA Link Software CD-ROM			
Approvals						
ATEX Directive	94/9/FC					
ALTAIR 5X Mult						
	II 2G Ex d ia mb IIC Gb IP65 – Zone 1 when XCell Ex sensor is installed.					
	C Ga IP65 – Zone 0 when XCell					
	Sensor is not installed.					
ALTAIR 5X Multigas Detector with rechargeable battery pack T4						
I M1 Ex ia I M						
ALTAIR 5X IR Multigas Detector II 2G Ex d e ia mb						
IIC T4 Gb IP 65 CE 0080						
	/108/EEC (EMC): EN 50270 Typ	e 2,				
	EN 61000-6-3					

For additional customized versions and calibration gases, use MSA's ATO ordering sheet or contact your MSA Customer Service.

Your direct contact

Γ

MSA (Britain) Limited Lochard House Linnet Way Strathclyde Business Park BELLSHILL ML4 3RA Phone +44 (0)16 98 5733 57 Fax +44 (0)16 98 74 0141 E-mail info@msabritain.co.uk www.msabritain.co.uk

Subject to change without notice

ID 08-537.2 UK/00/06.11

 MSA Europe

 Thiemannstrasse 1

 12059 Berlin

 Germany

 Phone + 49 (0)30 68 86-0

 Fax + 49 (0)30 68 86-15 17

 E-mail contact@msa-europe.com

 MSA International

 1000 Cranberry Woods Drive

 Cranberry Township, PA 16066

 Phone + 412 967 33 54

EN 61000-6-3

MSA International 1000 Cranberry Woods Drive Cranberry Township, PA 16066 Phone +1 412967 33 54 Fax +1 412967 33 51 E-mail msa.international@msanet.com www.MSAnet.com

